AI-Ce-Si (Aluminum-Cerium-Silicon)

V. Raghavan

Rare-earth mischmetal additions are made to Al-Si hypereutectic alloys for grain refinement. Cerium being a primary constituent of commercial mischmetal alloys, the study of the Al-Ce-Si system is of practical interest. The early data on this ternary system compiled by [1995Vil] depict a partial isothermal section in the Ce-poor region at 400 °C and list several ternary compounds. Recently, [2004Gro] reinvestigated this system experimentally and provided a thermodynamic description. Two vertical sections, an isothermal section at 500 °C and a liquidus projection were calculated by [2004Gro].

Binary Systems

The Al-Ce system [2005Gao] depicts the following intermediate phases: $\alpha Ce_3Al_{11}(\alpha La_3Al_{11}$ -type orthorhombic), CeAl₄ or βCe_3Al_{11} (Al-deficient Al₄Ba-type tetragonal), CeAl₃ (D0₁₉, Ni₃Sn-type hexagonal), CeAl₂ (C15, MgCu₂-type cubic), CeAl (orthorhombic), αCe_3Al (D0₁₉, Ni₃Sn-type hexagonal), and βCe_3Al (L1₂, AuCu₃-type cubic). The Al-Si phase diagram is a simple eutectic system with the eutectic reaction at 577 °C and 12.2 at.% Si. The Ce-Si phase diagram [2004Gro] depicts the following intermediate phases: Ce₅Si₃ (D8_m, W₅Si₃-type tetragonal), Ce₃Si₂ (D5_a, U₃Si₂-type tetragonal), Ce₅Si₄ (Zr₅Si₄-type tetragonal), CeSi (B27, FeB-type orthorhombic), Ce₃Si₅ (GdSi₂-type orthorhombic), and CeSi₂ (C_c,ThSi₂-type

tetragonal). Among these, only CeSi_2 has a homogeneity range (from 64 to 66.7 at.% Si).

Ternary Phases

[2004Gro] listed the known ternary phases in this system. Ce $(Si_{1-x}Al_x)_2$ (denoted τ_1) is an extension of the binary phase CeSi₂ into the ternary region, with x = 0 to ~ 1 at high temperatures and x = 0.1-0.9 at 500 °C. AlCeSi₂ (τ_2) is hexagonal. Al_xCeSi_{2-x} (1.55<x<1.64) (denoted τ_3) is AlB₂type hexagonal. Al₂CeSi₂ (τ_4) is La₂O₃-type hexagonal and is a metastable phase. Al₄Ce₃Si₆ (τ_5) is hexagonal. It disappears after prolonged annealing at 500 °C [2004Gro].

Computed Ternary Equilibria

With starting metals of 99.997% Al, 99.9% Ce, and 99.9998% Si, [2004Gro] arc-melted nine ternary alloys with Ce content up to 25 at.% and Si up to 45 at.%. The samples were annealed at 500 °C for 870 h and quenched in water. The phase equilibria were studied by means of x-ray diffraction, scanning electron microscope with energy dispersive spectroscopic attachment. Differential thermal analysis and differential scanning calorimetry were carried out at heating/cooling rates of 2 and 5 °C per min. Two computed vertical sections at 90 at.% Al

Fig. 1 Al-Ce-Si computed vertical section at 90 at.% Al [2004Gro]

Fig. 2 Al-Ce-Si computed vertical section at 20 at.% Ce [2004Gro]

Fig. 3 Al-Ce-Si computed liquidus projection for Al-rich alloys [2004Gro]

and 20 at.% Ce respectively are compared with experimental data in Fig. 1 and 2 [2004Gro]. The agreement is satisfactory. The liquidus projection for Al-rich alloys computed by [2004Gro] is given in Fig. 3. Here, τ_1 and τ_2 appear as phases of primary crystallization, in addition to (Al), (Si) and Ce₃Al₁₁. The computed isothermal section at 500 °C shown in Fig. 4 agrees with the limited experimental results of [2004Gro]. The ternary phases τ_1 , τ_2 , and τ_3 are present at this temperature. The τ_1 phase was modeled as extending up to the binary Ce-Si side at 500 °C. The homogeneity range of the binary CeSi₂ was not considered.

Fig. 4 Al-Ce-Si computed isothermal section at 500 °C [2004Gro]. Thin two-phase regions are omitted

References

- **1995Vil:** P. Villars, A. Prince, and H. Okamoto, Al-Ce-Si Vol. 3, ASM International, Materials Park, OH, 1995, p 2994-2995
- 2004Gro: J. Grobner, D. Mirkovic, and R. Schmid-Fetzer, Thermodynamic Aspects of the Constitution. Grain Refining,

and Solidification Enthalpies of Al-Ce-Si Alloys, *Metall. Mater. Trans. A.*, 2004, **35A**, p 3349-3362

2005Gao: M.C. Gao, N. Unlu, G.J. Shiflet, M. Mihalkovic, and M. Widom, Reassessment of Al-Ce and Al-Nd Binary Systems Supported by Critical Experiments and First-Principles Energy Calculation, *Metall. Mater. Trans. A*, 2005, 36A, p 3269-3279